
International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 1566
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

An Optimized Flexi Max-Min Scheduling
Algorithm for Efficient Load Balancing on a Cloud

Fale Mantim Innocent, Sitlong Nengak Iliya, Ramson Emmanuel Nannim, Datti Emmanuel Useni, Jakawa Jimmy Nerat

Abstract— Cloud Computing is a popular and cost-effective computing platform for hosting applications and delivering services over the
internet. Its robustness assumes many forms which include: Infrastructure as a Service (IaaS); Platform as a Service (PaaS); Software as
a Service (SaaS); Database as a Service (DaaS), Network as a Service (NaaS); and so on. Load Balancing is required to distribute tasks
across Virtual Machines on one hand; and on the other hand, efficiently place Virtual Machines on physical servers such that resource and
energy consumption is minimized. This paper proposes a new task scheduling algorithm: ‘Optimized Flexi Max-Min Scheduling Algorithm’.
This algorithm maintains a data structure which is modeled after a Binary Search Tree for estimations, enhanced searching, task allocation,
and migration of tasks. CloudSim was used to model and simulate the cloud computing environment in order to obtain simulated data.
Microsoft Visual Studio 2017’s C#.NET was used to implement the Round Robin, traditional Max-Min, and the proposed task scheduling
algorithms. The result of this experiment shows that the proposed algorithm outperforms Round Robin and the traditional Max-Min task
scheduling algorithms.

Index Terms— Algorithms, Cloud Computing, CloudSim, Dynamic Scheduling, Load Balancing, Max-Min, Task Scheduling

——————————  ——————————

1 INTRODUCTION
HE Cloud is a collection of resources shared with dyna-
mism over a network [1] [2]. Numerous technologies
make cloud computing possible. Of them all, virtualiza-

tion is the most important. Virtualization [3] [4] provides a
favorable approach through which resources on one or more
physical servers can be shared through incomplete or com-
plete machine solution. This entails hardware and software
partitioning into multiple execution environments in which
each partition can act as a complete system. Through virtual-
ization, numerous applications can run on different perfor-
mance-isolated platforms called Virtual Machines (VMs) that
are all placed on one physical machine (PM) [5] [6]. Virtualiza-
tion helps cloud providers to ensure that Quality of Service
(QoS) [7] [8] is conveyed to users while the achievement of
optimum server utilization and minimized energy consump-
tion is possible. Virtualization provides redundancy via real-
time data synchronization [9], [10] between datacenters in or-
der to prevent data loss in case of system crash or other un-
planned issues.

Cloud providers intend to maximize profit by minimizing
operational cost. Power consumption [11] [12] primarily dom-
inates the operational cost of cloud datacenters. The other is-
sues that can be attributed to power management is carbon
dioxide emission and system reliability. Power management is
a load balancing issue even though other approaches, like
green computing, exist for addressing this problem. Load bal-

ancing [13] [14] is a method used to distribute workload on
numerous computers or a computer constellation via network
links to achieve optimum resource utilization which maximiz-
es throughput and curtails overall response time. This tech-
nique minimizes total waiting time as well as avoids too much
overload on resources by distributing traffic among PMs so
that data can be sent and received with minimum delay.
This research proposes an algorithm which is modeled after
the traditional Max-Min task scheduling algorithm but opti-
mizes key features which are identified as not being efficient.
This claim shall be elaborated in SECTION 2.

Section 2 of this paper discusses ‘RELATED WORK’ while
section 3 discusses ‘SYSTEM MODEL’. In section 4, the pro-
posed ‘OPTIMIZED FLEXI MAX-MIN SCHEDULING AL-
GORITHM’ is discussed. Section 5 presents ‘EXPERIMENTS
AND EVALUATION’ while section 6 covers ‘CONCLUSION’.
Section 7 is ‘REFERENCES’.

2 RELATED WORK
Generally, load balancing or task scheduling algorithms are
categorized into: static; and dynamic [15]. The static algo-
rithms include: Round Robin (RR); and Opportunistic Load
Balancing (OLB) algorithms. RR allocates tasks in turns while
OLB takes into account a user’s priority and its bandwidth
demand. The dynamic ones include: Minimum Execution
Time (MET); Minimum Completion Time (MCT); Min-Min;
and Max-Min algorithms. The latter category aims at optimiz-
ing resource utilization in consideration of task execution time
and expected completion time. Max-Min and Min-Min are
specifically for tasks arriving in batches while MET and MCT
are mainly for single task allocation [16]. Hybrid algorithms
[17] [18] are possible as there are emerging load balancing al-
gorithms. This category exploits the advantages of both static
and dynamic algorithms. Load balancing algorithms tend to
address two major issues: task scheduling across virtual ma-

T

————————————————
• Fale Mantim Innocent is with Federal College of Education, Pankshin,

Plateau State, Nigeria. Email: thefmicorporation@gmail.com
• Sitlong Nengak Iliya is with Federal College of Education, Pankshin, Plat-

eau State, Nigeria. Email: iliya_sitlong@yaoo.com
• Ramson Emmanuel Nannim is with Federal College of Education,

Pankshin, Plateau State, Nigeria. Email: ramsonn78@gmail.com
• Datti Emmanuel Useni is with Federal College of Education, Pankshin,

Plateau State, Nigeria. Email: duedatti@yahoo.com
• Jakawa Jimmy Nerat is a M.Sc. Computer Science student with Abubakar

Tafawa Balewa University, Bauchi, Nigeria. Email:
jimmycartty@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 1567
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

chines; and VM placement [19]. A handful of load balancing
algorithms exist but only a few (emerging algorithms) shall be
reviewed in the following paragraphs.

The following paragraphs will present a brief overview of
some reputable algorithms proposed in their respective re-
search articles. This is to further expose approaches that have
been used for load balancing in the cloud environment.

In ‘Analysis of variants in Round Robin Algorithms for
load balancing in Cloud Computing’, the Round Robin algo-
rithm was discussed. It allocates tasks to virtual machines in
turns [20] not minding the execution time of tasks thus leading
to load imbalance in most cases. As tasks arrive, it simply as-
signs them to virtual machines in a circular fashion until the
tasks are exhausted.

The ‘Max-Min Task Scheduling Algorithm for Load Balance
in Cloud Computing - Elastic Cloud Max-Min (ECMM)’, a
close variant of Max-Min, is a dynamic load balancing algo-
rithm for jobs arriving in batches. This algorithm maintains a
task status table to estimate the real-time load of virtual ma-
chines and the expected completion time of tasks, which can
allocate the workload among nodes and realize the load bal-
ance [21]. A virtual machine status table, which comes from
the task status statistics, is also maintained. This algorithm is
based on the traditional Max-Min algorithm but varies slightly
by the introduction of an update algorithm whose primary
function is to remove completed tasks and update completion
time of tasks that are still being executed. In fact, the introduc-
tion of the update algorithm is what gives it its elastic feature.
A typical scenario for ECMM is a datacenter housing several
virtual machines. Each time jobs arrive in a batch, they are
sorted in descending order of their execution time. The task
with the maximum execution time is then allocated to the vir-
tual machine with the least (minimum) load. Each time a vir-
tual machine completes the execution of a task, the estimated
completion time for pending tasks is recomputed using the
update algorithm.

The ‘Enhanced Bee Colony for Efficient Load Balancing
and Scheduling in Cloud’ is a dynamic load balancing algo-
rithm. Its typical scenario and assumption is that there are
many datacenters housing several virtual machines. This algo-
rithm is constituted by two sub-algorithms: the task schedul-
ing algorithm; and the migration algorithm [22]. When tasks
arrive, the load on every datacenter is computed by the Cloud
Information System (CIS) and fed to the Load Balancer. A
threshold value (between 0 and 1) is computed and it is used
as a benchmark for categorizing datacenters into overloaded
and under-loaded categories. If the threshold value of a data-
center is less than 0.5, such a datacenter is under-loaded oth-
erwise, it is said to be overloaded. Tasks are then allocated to
virtual machines in under-loaded datacenters using the task
scheduling algorithm in real-time. After allocation of tasks,
virtual machines in these datacenters execute these tasks. As
they do so, some complete execution before others leaving
them idle and the others overloaded. The migration algorithm
is then used to balance the load on datacenters by moving
some tasks from overloaded virtual machines to under-loaded
ones. This also is done in real-time.

‘A PSO-Based Algorithm for Load Balancing in Virtual Ma-

chines of Cloud Computing Environment’ is a hybrid load
balancing algorithm aimed at addressing NP-hard combina-
tional optimization problem to establish the mappings be-
tween jobs submitted by user terminals and dynamical re-
sources encapsulated in virtual machines [23]. The primary
concern addressed by this algorithm is that if only execution
time is taken into consideration when scheduling cloud re-
sources, a serious load imbalance problem may occur between
virtual machines (VMs) in the cloud computing environment.
Hence, task execution time is optimized in view of both the
task running time and the system resource utilization. This
algorithm is an improvement on the standard Particle Swarm
Optimization (PSO) algorithm. It introduced a simple muta-
tion mechanism and a self-adapting inertia weight method by
classifying fitness values. The typical scenario or assumption
of this model is that independent and interrelated tasks can be
submitted by terminal users in which case the interrelated jobs
can be divided into small separate tasks that can run without
interferences, so it just have to deal with how to balance the
workload of VMs with independent tasks.

‘An Optimized Flexi Max-Min Scheduling Algorithm for
Efficient Load Balancing on a Cloud’ is a dynamic load balanc-
ing algorithm modeled after the traditional Max-Min schedul-
ing algorithm. It features major modifications in order to op-
timize and add adaptable features to make it flexible and effi-
cient in varying scenarios. Even though most algorithms ig-
nore recommendations for implementation such as data struc-
tures, problems with such algorithms are still detected or pro-
jected via simulation. The traditional Max-Min algorithm is for
tasks arriving in the same batch [21] [24]. The following are
problems identified with the traditional Max-Min algorithm:

 Load balancing is done during task allocation.
 It lacks mechanisms for dealing with uncompleted

tasks as new tasks could arrive while some tasks are
still being executed.

 It puts only execution time into consideration when
scheduling tasks.

 The Max-Min algorithm maintains an unsorted list of
tasks and virtual machines.

 Sorting is done in O(n2) time.
 Searching is done in O(n) time. It is primarily a blind

search.

The aforementioned problems are handled by the Optimized
Flexi Max-Min algorithm as follows:

 An update algorithm is introduced to handle uncom-
pleted tasks.

 A task migration algorithm is also introduced to bal-
ance load across virtual machines in real-time.

 Jobs are scheduled either in batch or as single tasks.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 1568
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

 Other parameters like task running time and system
resource utilization are put into consideration when
scheduling tasks.

 A Binary Search Tree (BST) is used to maintain tasks
and VMs. This BST is a self-balancing tree. The nodes
of this tree represent VMs. Each node is a data struc-
ture capable of maintaining task entries for each VM.
In order to achieve load balancing on VMs, tasks are
migrated between nodes (VMs). Through this, the
BST achieves self-balance.

 Due to the use of BSTs, no sorting is required as tasks
are automatically allocated to the nodes on the tree
(VMs) which are already sorted.

 Searching is informed/heuristic. Searching is done in
O(logn) time.

3 SYSTEM MODEL

Task Model

Definition 1 Each time a VM executes a task, the task does
consume resources. This task resource consumption is in ac-
cordance with the availability of resources at its respective
node (VM).

Ti = [Tcpui, Tmemi, Tdiski, Tneti]; (1)

Definition 2 Execution Time: For every task i executed on
VM j, the time it will take to complete task i is referred to as its
weight or execution time and it is represented as Eij.

Load Model

Definition 3 Node Load: The load at a given node is the
summation of the weight of all tasks allocated to such a node.
This can be represented as Lij.

Lij = � 𝐸𝑖𝑗𝑛
𝑖=1 ; (2)

Definition 4 Load Benchmark: This value is a computation
of the average of Node Load Lij represented as benchmark(L)

benchmark(L) = � 𝐿𝑖𝑗 𝑛,𝑚
𝑖=1,𝑗=1 / m; (3)

4 OPTIMIZED FLEXI MAX-MIN SCHEDULING
ALGORITHM

The Optimized Flexi Max-Min Scheduling algorithm main-
tains a BST-like data structure to organize VMs such that each
node on the tree represent a VM. The nodes are capable of

holding multiple task entries. Once tasks arrive, whether in
batches or as singletons, the tasks are allocated to the nodes
(VMs) of the tree by a task allocation algorithm. Obviously,
some VMs will finish execution of tasks earlier than others
leaving them idle or causing an imbalance on the VMs tree.
An update algorithm is then used to estimate completion time
for uncompleted tasks and delete completed tasks. A migra-
tion algorithm is used to possibly remove pending tasks from
nodes (VMs) and reassign to others in order to balance the tree
(load balancing). This process continues until all tasks on all
nodes (VMs) have finished execution and deleted from nodes.
This algorithm consists of three sub-algorithms: Task Alloca-
tion Algorithm; Update Algorithm; and Migration Algorithm.

4.1 Task Entry Structure And Virtual Machine Parame-
ters

The Task Entry for every VM is a four tuple where id mean a
unique task identification number, vm_id is a unique VM iden-
tification number, exectime refers to task execution time or
weight, and comptime refers to estimated completion time for
task.

Tid = <id, vm_id, exectime, comptime>; (4)

Every VM also maintains certain parameters to help moni-
tor its activities. The parameters are vm_id which means VM
unique identification number, load refers to the total weight of
tasks allocated to the VM, finishtime refers to the timestamp the
VM will finish executing the tasks allocated to it, and last re-
fers to the time the last task finished execution.

VMid = <vm_id, load, finishtime, last>; (5)

4.2 Task Allocation Algorithm

STEP 1: Insert all VMs on a BST. Each VM id serves as key to
their respective nodes on the BST.
STEP 2: Identify VM with the least load on the BST and assign
task to it. Repeat this process until all tasks have been allocat-
ed.
STEP 3: While VMs are computing tasks, do the following:

 Update tasks and VMs parameters.
 Migrate pending tasks from overloaded VMs to under-

loaded or idle ones to obtain load balance
STEP 4: Terminate algorithm when VMs have executed all
tasks.

4.3 Update Algorithm

STEP 1: Delete all completed tasks from the BST nodes (VMs).
STEP 2: For all uncompleted tasks, traverse the BST in in-order
and do the following:
 VMid.load =� 𝑇𝑖𝑖𝑑𝑛

𝑖=1 .exectime; (6)
 (recall: Lij =� 𝐸𝑖𝑗𝑛

𝑖=1)
 VMid.finishtime = timestamp + VMid.load; (7)
 Tid.comptime = VMTid.vm_id.last + Tid.exectime; (8)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 1569
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

STEP 3: Terminate algorithm when VMs have executed all
tasks.

4.4 Migration Algorithm

STEP 1: For all pending tasks (that is tasks awaiting execu-
tion), traverse the BST in in-order and do the following:

 Compute average load on all nodes (VMs).
 Use the value as benchmark to determine overloaded

and under-loaded nodes (VMs) on the BST (under-
loaded < benchmark and overloaded >= benchmark).
benchmark(L) =� 𝐿𝑖𝑗𝑛,𝑚

𝑖=1,𝑗=1 / m; (9)
 Remove pending tasks from overloaded nodes (VMs)

and assign to under-loaded ones in order to obtain a bal-
ance.

STEP 2: Terminate algorithm when VMs have no pending
tasks.

5 EXPERIMENTS AND EVALUATION
5.1 Experimental Conditions for Run

CloudSim was used to model and simulate VMs, computing
resources, and energy consumption in order to evaluate the
efficiency of load balancing for the proposed Optimized Flexi
Max-Min scheduling algorithm. This paper evaluates the per-
formance of the algorithm using parameters such as Average
Task Pending Time, Task Response Time Ratio, and VM re-
source utilization. This experiment is to verify the perfor-
mance of the Optimized Flexi Max-Min Scheduling Algorithm
against its counterparts. The control group in this experiment
include Round Robin (RR), Max-Min (MM), and the proposed
Optimized Flexi Max-Min (OFMM) algorithms in this respec-
tive order. In this experiment, 6 tasks were scheduled against 4
VMs (see Fig. 1 and Fig. 2).

5.2 Discussion of Results

In terms of Average Task Pending Time, the Optimized Flexi
Max-Min scheduling algorithm outperforms both Round Rob-
in (3rd) and the traditional Max-Min (2nd) scheduling algo-
rithms. For Average Task Response Time Ratio, the Opti-
mized Flexi Max-Min scheduling algorithm also performed
better than its counterparts with Round Robin (2nd) and the
traditional Max-Min (3rd).

Fig. 1: Average Task Pending Time for RR, MM, and OFMM

Fig. 2: Average Task Response Time Ratio for RR, MM, and
OFMM

6 CONCLUSION
This paper introduced the Optimized Flexi Max-Min Schedul-
ing algorithm. It shows how it varies from the traditional Max-
Min task scheduling algorithm and the other algorithms re-
viewed in SECTION 2. This research also shows how a suita-
ble data structure can be used to enhance a load balancing
algorithm in a virtualized environment. This algorithm suits
both tasks arriving in batches and single tasks. The results of
the experiments show that the Optimized Flexi Max-Min
Scheduling algorithm is competitive even though the experi-
ments were conducted in a simulated cloud environment. In a
real cloud environment, problems may occur due to band-
width restrictions and task decomposition, hence, further re-
search is recommended in this area.

REFERENCES

[1] H. Alexa and C. James, "The Basics of Cloud Computing,"

Carnegie Mellon University, 2011.
[2] Torry Harris, "Cloud Computing - An Overview,"

[Online]. Available:
http://www.thbs.com/downloads/Cloud-Computing-
Overview.pdf. [Accessed 21 December 2017].

[3] G. Yongqiang, G. Haibing, Q. Zhengwei, H. Yang and L.
Liang, "A multi-objective ant colony system algorithm for
virtual machine placement in cloud computing," Journal of
Computer and System Sciences, vol. 79, no. 8, pp. 1230-1242,
2013.

[4] K. C. N. M. Mosharaf and B. Raouf, "A survey of network
virtualization," Computer Networks, vol. 54, no. 5, pp. 862-
876, 2010.

[5] B. Paul, D. Boris, F. Keir, H. Steven, H. Tim, H. Alex, N.
Rolf, P. Ian and W. Andrew, "Xen and the art of
virtualization," in SOSP '03 Proceedings of the nineteenth
ACM symposium on Operating systems principles, 2003.

[6] L. Flavio and D. P. Roberto, "Secure virtualization for
cloud computing," Journal of Network and Computer
Applications, vol. 34, no. 3, pp. 1113-1122, 2011.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 1570
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

[7] L. K. Ronald and D. V. Russel, Cloud Security: A
Comprehensive Guide to Secure Cloud Computing, Wiley
Publishing, 2010.

[8] J. Y and M. K, "Cloud computing - concepts, architecture
and challenges," in Computing, Electronics and2012
International Conference on Computing, Electronics and
Electrical Technologies (ICCEET), Kumaracoil, India, 2012.

[9] A. Mohammad and H. Eui-Nam, "Fog Computing and
Smart Gateway Based Communication for Cloud of
Things," in 2014 International Conference on Future Internet
of Things and Cloud, Barcelona, 2014.

[10] G. Chunye, L. Jie and Z. Qiang, "The Characteristics of
Cloud Computing," in 2010 39th International Conference on
Parallel Processing Workshops, San Diego, CA, USA, 2010.

[11] Z. Qi, C. Lu and B. Raouf, "Cloud computing: state-of-the-
art and research challenges," Journal of Internet Services and
Applications, vol. 1, no. 1, pp. 7-18, 2010.

[12] K. Dzmitry, B. Pascal and U. K. Samee, "GreenCloud: a
packet-level simulator of energy-aware cloud computing
data centers," The Journal of Supercomputing, vol. 62, no. 3,
pp. 1263-1283, 2012.

[13] K. M. Nitin and M. Nishchol, "Load Balancing
Techniques: Need, Objectives and Major Challenges in
Cloud Computing - A Systematic Review," International
Journal of Computer Applications, vol. 131, pp. 11-19, 2015.

[14] R. Martin, L. David and T.-B. A, "A Comparative Study
into Distributed Load Balancing Algorithms for Cloud
Computing," in 2010 IEEE 24th International Conference on
Advanced Information Networking and Applications
Workshops, Perth, WA, Australia, 2010.

[15] W. Lee, J. S. Howard, P. R. Vwani and A. M. Anthony,
"Task Matching and Scheduling in Heterogeneous
Computing Environments Using a Genetic-Algorithm-
Based Approach," Journal of Parallel and Distributed
Computing, vol. 47, no. 1, pp. 8-22, 1997.

[16] S. Pinal, "A SURVEY OF VARIOUS SCHEDULING
ALGORITHM IN CLOUD," International Journal of
Research in Engineering and Technology, vol. 2, no. 2, pp.
131-135, 2013.

[17] M. M, M. N, K. Y, C. L. Y, G. T. E, Y. Z. A and T. D, "A
parallel bi-objective hybrid metaheuristic for energy-
aware scheduling for cloud computing systems," Journal of
Parallel and Distributed Computing, vol. 71, no. 11, pp. 1497-
1508, 2011.

[18] F. B. Luiz and R. M. M. Edmundo, "HCOC: a cost
optimization algorithm for workflow scheduling in
hybrid clouds," Journal of Internet Services and Applications,
vol. 2, no. 3, pp. 207-227, 2011.

[19] T. M. Siva, S. R and Y. Lei, "Stochastic models of load
balancing and scheduling in cloud computing clusters," in
2012 Proceedings IEEE INFOCOM, Orlando, FL, USA,
2012.

[20] S. Pooja and M. Pramati, "Analysis of variants in Round
Robin Algorithms," International Journal of Computer
Science and Information Technologies, vol. 4, no. 3, pp. 416-

419, 2013.
[21] M. Yinchi, C. Xi and L. Xiaofang, "Max-Min Task

Scheduling Algorithm for Load Balance in Cloud
Computing," in Proceedings of International Conference on
Computer Science and Information Technology, Advances in
Intelligent Systems and Computing 225, India, 2014.

[22] B. K. Remesh and P. Samuel, "Enhanced Bee Colony
Algorithm for Efficient Load Balancing and Scheduling in
Cloud," Innovations in Bio-Inspired Computing and
Applications, vol. 424, pp. 67-78, 2016.

[23] L. Zhanghui and W. Xiaoli, "A PSO-Based Algorithm for
Load Balancing in Virtual Machines of Cloud Computing
Environment," in International Conference in Swarm
Intelligence, Berlin, 2012.

[24] M. Gao and L. Hao, "An Improved Algorithm Based on
Max-Min for Cloud Task Scheduling," Recent Advances in
Computer Science and Information Engineering, vol. 125, pp.
217-223, 2012.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Related Work
	3 System Model
	4 Optimized Flexi Max-Min Scheduling Algorithm
	5 Experiments and Evaluation
	6 Conclusion
	References

